5 research outputs found

    Learning to Navigate in a VUCA Environment: Hierarchical Multi-expert Approach

    Full text link
    Despite decades of efforts, robot navigation in a real scenario with volatility, uncertainty, complexity, and ambiguity (VUCA for short), remains a challenging topic. Inspired by the central nervous system (CNS), we propose a hierarchical multi-expert learning framework for autonomous navigation in a VUCA environment. With a heuristic exploration mechanism considering target location, path cost, and safety level, the upper layer performs simultaneous map exploration and route-planning to avoid trapping in a blind alley, similar to the cerebrum in the CNS. Using a local adaptive model fusing multiple discrepant strategies, the lower layer pursuits a balance between collision-avoidance and go-straight strategies, acting as the cerebellum in the CNS. We conduct simulation and real-world experiments on multiple platforms, including legged and wheeled robots. Experimental results demonstrate our algorithm outperforms the existing methods in terms of task achievement, time efficiency, and security.Comment: 8 pages, 10 figure

    Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium

    No full text
    This study researches the dynamical location optimization problem of a mobile charging station (MCS) powered by a LiFePO 4 battery to meet charging demand of electric vehicles (EVs). In city suburbs, a large public charging tower is deployed to provide recharging services for MCS. The EV’s driver can reserve a real-time off-street charging service on the MCS through a vehicular communication network. This study formulates a multi-period nonlinear flow-refueling location model (MNFRLM) to optimize the location of the MCS based on a network designed by Nguyen and Dupuis (1984). The study transforms the MNFRLM model into a linear integer programming model using a linearization algorithm, and obtains global solution via the NEOS cloud CPLEX solver. Numerical experiments are presented to demonstrate the model and its solution algorithm

    Numerical Study on Mechanical Properties of the Freezing–Thawing Cycle of Tailings Based on Particle Discrete Element Method

    No full text
    To study the effects of the number of freezing–thawing cycles (F-T cycles), the dry density, and the average particle diameter on the mechanical properties of tailings, the calibration laws of the fine-scale parameters in the discrete particle element numerical simulation software PFC2D(Particle Flow Code) were first tested, and then pre-experiments were conducted in the form of orthogonal tests. Finally, according to the results of the pre-experiments and the analysis of the pre-experimental results by SPSS (Statistical Product Service Solutions) software, uniaxial tests were carried out for different numbers of freeze–thaw cycles, different dry densities, and different average particle sizes. The tailings specimens were subjected to uniaxial compression simulations. The results showed that (1) the uniaxial compressive strength of the tailings specimens decreased with each freeze–thaw cycle, and stabilized after seven freeze–thaw cycles. (2) With a greater number of freeze–thaw actions, the porosity of the tailings increased after freeze–thawing. The peak of porosity was much higher than that of the models with fewer than seven freeze–thaw actions. (3) The contact number of tailings specimens showed a significant decrease after the number of freeze–thaw cycles reached seven. However, the amount of exposure was not the main factor affecting the strength of tailings (4). As the number of freeze–thaws increased, the tailings model was more prone to stress concentration. Previously, PFC software has been applied to tailings simulation studies, and this study verifies the feasibility of this method. This research is able to offer a reference for studying the mechanical property changes of tailings in the cold highland area
    corecore